1. Trig Identities on the six trigonometric ratios:
(Note: trig is an abbreviation for trigonometric. We will use trig for the word trigonometric to avoid repetition and therefore boredom.)
1. Sinα = opposite side/hypotenuse = AB/AC
2. Cosα = adjacent side/hypotenuse = BC/AC
3. Tanα = opposite side/adjacent side = AB/BC
2. The reciprocal Trig identities
1. cosecα = 1/sinα
2. secα = 1/cosα
3. cotα = 1/tanα
3. The three Pythagorean trig identities
1. Sin2α + Cos2α = 1
2. Sec2α – tan2α = 1, Sec2α = 1+ tan2α
3. Cosec2α – cotan2α = 1, Cosec2α = 1+ cotan2α
4. The quotient Trig identities:
1. tan α = sin α /cos α
2. cot α = cos α /sin α
5. Trig identities of negative angles:
1. Sin (– α) = –sin α
2. cos (– α) = cos α
3. tan (– α) = – tanα
4. cot (– α) = – cotα
5. Sec (– α) = Sec α
6. cosec (– α) = – cosec α
6. Trig identities of compound angles
1. sin (A + B) = sinAcosB + cosAsinB
2. sin (A – B) = sinAcosB – cosAsinB
3. cos (A + B) = cosAcosB – sinAsinB
4. cos (A – B) = cosAcosB + sinAsinB
5. Tan(A + B) = (sinAcosB + cosAsinB)/(cosAcosB – sinAsinB)
6. Tan(A – B) = (sinAcosB – cosAsinB)/(cosAcosB + sinAsinB)
7. Trig identities on products of compound angles
1. sin(A + B)sin(A – B) = sin2A – sin2B Or cos2B – cos2A
2. cos (A + B)cos(A – B) = cos2A – sin2B Or cos2B – sin2A
3. tan (A + B)tan(A – B) = (tan2A – tan2B)/ (1 – tan2Atan2B)
4. tan(A + B + C) = (tan A + tan B + tan C – tanA tanB tanC)/ (1– tanAtanB – tanB tanC –tanC tanA)
8. Trig identities on conversion of sum of angles to product of angles
1. sin (A + B) + sin ( A – B) = 2sinAcosB
2. sin (A + B) – sin (A – B) = 2 cosAsinB
3. cos ( A + B ) + cos (A – B) = 2cosAcosB
4. cos ( A – B ) – cos (A + B) = 2sinAsinB
9. Trig identities on sums of angles.
10. trig identities on double angles:
1. Sin2A = 2sinAcosA Or 2tanA/ (1 + tan2A)
2. cos2A = 2cos2A – 1 Or 1 – 2sin2A Or (1 – tan2A)/(1 + tan2A)
3. tan2A = 2tanA/(1 – tan2A)
11. Trig identities on triple angles
1. Sin3A = 3sinA – 4sin3A
2. cos3A = 4cos3A – 3cosA
3. tan3A = (3tanA – tan3A)/(1 – 3tan2A)
12. Trig identities on sub-multiple angles
1. sin2A + sin2B + sin2C = 4sinAsinBsinC Or -1 – 4cosAcosBcosC
2. cos2A + cos2B + cos2C = 1 – 4 sinAsinBsinC
2. tan2A + tan2B + tan2C = tan2C tan2B tan2C
13. The law of sines Or the sine rule:
14. the law of cosines or the cosine rule
a2 = b2 + c2 – 2bc cosA
b2 = a2 + c2 – 2ac cosB
c2 = b2 + a2 – 2abcosC
15. the projection formula
a = bcosC + ccosB
b = acosC + ccosA
c = bcosA + acosB
Trig functions.
Trig equations.